open access publication

Article, 2024

Mechanism for Cu-enhanced hydrothermal stability of Cu–CHA for NH 3 -SCR

Catalysis Science & Technology, ISSN 2044-4753, 2044-4761, Volume 14, 12, Pages 3407-3415, 10.1039/d4cy00373j

Contributors

Singh, Shivangi [1] [2] Janssens, Ton V W 0000-0002-1225-0942 [1] Grönbeck, Henrik J 0000-0002-8709-2889 [2]

Affiliations

  1. [1] Umicore Denmark ApS, DK 2970 Horsholm, Denmark
  2. [NORA names: Denmark; Europe, EU; Nordic; OECD];
  3. [2] Chalmers University of Technology
  4. [NORA names: Sweden; Europe, EU; Nordic; OECD]

Abstract

The presence of Cu delays dealumination of CHA zeolites when exposed to water at high temperatures. Exposure of acidic zeolite-based catalysts to water at high temperatures generally leads to deactivation due to dealumination. In Cu–CHA zeolite, which is a preferred catalyst for the selective catalytic reduction of NO by NH 3 (NH 3 -SCR), the acidic protons in the zeolite are partially exchanged by Cu ions. The presence of Cu has been measured to reduce the rate of dealumination, thus stabilizing the catalyst. To understand the stabilizing effect of Cu, density functional theory calculations, ab initio thermodynamics and microkinetic modeling are used to compare the reaction mechanism for the dealumination of H–CHA to Cu–CHA. For H–CHA, we find that dealumination leads to the formation of mobile Al(OH) 3 H 2 O (extra-framework aluminum) species, whereas for Cu–CHA, formation of framework bound Cu–Al species is thermodynamically preferred over Al(OH) 3 H 2 O, which results in the increased stability of Cu–CHA. The formation of mobile Al(OH) 3 H 2 O in Cu–CHA is, moreover, associated with a high energy barrier. The phase diagrams show the formation of Al(OH) 3 H 2 O and Al 2 O 3 from H–CHA and that high temperatures favor the formation of Al 2 O 3 . For Cu–CHA, high temperatures lead to the formation of CuO and Al 2 O 3 , which is favored over Al(OH) 3 H 2 O + CuO. The microkinetic model shows that the formation of Al(OH) 3 H 2 O in the presence of water starts at 380 K and 800 K in H–CHA and Cu–CHA, respectively. Additionally, the time evolution of the Al(OH) 3 H 2 O coverage at 923 K reveals that the process of dealumination is significantly faster for H–CHA as compared to Cu–CHA, which is in accordance with the measured increased stability.

Keywords

Al 2 O 3, Al(OH, CHA zeolite, Cu, Cu ions, Cu-Al, Cu-CHA, Cu-CHA zeolites, CuO, CuO., H-CHA, NH 3, ab initio thermodynamics, acidic protons, aluminum, barriers, calculations, catalyst, catalytic reduction, catalytic reduction of NO, deactivation, dealumination, density, density functional theory calculations, diagram, effect, energy barrier, evolution, exposed to water, exposure, extra-framework aluminum, formation, formation of Al 2 O 3, formation of CuO, formation of frameworks, framework, functional theory calculations, high energy barrier, high temperature, increased stability, ions, mechanism, microkinetic model, model, phase, phase diagram, presence, presence of Cu, presence of water, process, process of dealumination, proton, rate, rate of dealumination, reaction, reaction mechanism, reduction of NO, species, stability, stabilizing effect, temperature, theory calculations, thermodynamics, time, time evolution, water, zeolite, zeolite-based catalysts

Funders

  • Swedish Energy Agency
  • European Commission

Data Provider: Digital Science