open access publication

Article, 2024

Non-Abelian Holonomy of Majorana Zero Modes Coupled to a Chaotic Quantum Dot

Physical Review Letters, ISSN 0031-9007, 1079-7114, Volume 132, 3, Page 036604, 10.1103/physrevlett.132.036604

Contributors

Geier, Max 0000-0002-7552-5763 [1] Krøjer, Svend 0000-0001-9939-5628 [1] Von Oppen, Felix 0000-0002-2537-7256 [2] Marcus, Charles Masamed 0000-0003-2420-4692 [1] Flensberg, Karsten 0000-0002-8311-0103 [1] Brouwer, Piet W 0000-0002-6865-1868 [2]

Affiliations

  1. [1] University of Copenhagen
  2. [NORA names: KU University of Copenhagen; University; Denmark; Europe, EU; Nordic; OECD];
  3. [2] Freie Universität Berlin
  4. [NORA names: Germany; Europe, EU; OECD]

Abstract

If a quantum dot is coupled to a topological superconductor via tunneling contacts, each contact hosts a Majorana zero mode in the limit of zero transmission. Close to a resonance and at a finite contact transparency, the resonant level in the quantum dot couples the Majorana modes, but a ground-state degeneracy per fermion parity subspace remains if the number of Majorana modes coupled to the dot is five or larger. Upon varying shape-defining gate voltages while remaining close to resonance, a nontrivial evolution within the degenerate ground-state manifold is achieved. We characterize the corresponding non-Abelian holonomy for a quantum dot with chaotic classical dynamics using random matrix theory and discuss measurable signatures of the non-Abelian time evolution.

Keywords

Majorana, Majorana modes, Majorana zero modes, chaotic classical dynamics, chaotic quantum dot, chaoticity, classical dynamics, contact, coupling, degenerate ground-state, dot coupling, dots, dynamics, evolution, gate voltage, ground-state, holonomy, host, levels, matrix theory, mode, non-Abelian holonomy, parity subspace, quantum dot coupling, quantum dots, random matrix theory, resonance, resonance levels, signature, subspace, superconductors, theory, time evolution, topological superconductors, transmission, tunnel, tunnel contacts, voltage, zero modes

Funders

  • Danish Agency for Science and Higher Education
  • European Research Council
  • Deutsche Forschungsgemeinschaft
  • Danish National Research Foundation
  • European Commission
  • The Velux Foundations

Data Provider: Digital Science