open access publication

Article, 2023

The Roles of Riblet and Superhydrophobic Surfaces in Energy Saving Using a Spatial Correlation Analysis

Nanomaterials, ISSN 2079-4991, Volume 13, 5, Page 875, 10.3390/nano13050875

Contributors

Liu, Chunye [1] Wang, Wene (Corresponding author) [1] Hu, Xiaotao [1] Fang, Juan 0000-0001-9197-4166 [2] Liu, Fu-Lai 0000-0002-5006-8965 [3]

Affiliations

  1. [1] North West Agriculture and Forestry University
  2. [NORA names: China; Asia, East];
  3. [2] University of Science and Technology Beijing
  4. [NORA names: China; Asia, East];
  5. [3] University of Copenhagen
  6. [NORA names: KU University of Copenhagen; University; Denmark; Europe, EU; Nordic; OECD]

Abstract

Riblet and superhydrophobic surfaces are two typical passive control technologies used to save energy. In this study, three microstructured samples-a micro-riblet surface (RS), a superhydrophobic surface (SHS), and a novel composite surface of micro-riblets with superhydrophobicity (RSHS)-were designed to improve the drag reduction rate of water flows. Aspects of the flow fields of microstructured samples, including the average velocity, turbulence intensity, and coherent structures of water flows, were investigated via particle image velocimetry (PIV) technology. A two-point spatial correlation analysis was used to explore the influence of the microstructured surfaces on coherent structures of water flows. Our results showed that the velocity on microstructured surface samples was higher than that on the smooth surface (SS) samples, and the turbulence intensity of water on the microstructured surface samples decreased compared with that on the SS samples. The coherent structures of the water flow on microstructured samples were restricted by length and structural angles. The drag reduction rates of the SHS, RS, and RSHS samples were -8.37 %, -9.67 %, and -17.39 %, respectively. The novel established RSHS demonstrated a superior drag reduction effect and could improve the drag reduction rate of water flows.

Keywords

RS, RSHS, SS samples, analysis, angle, aspects, average velocity, coherent structures, composite surface, correlation analysis, drag, drag reduction effect, drag reduction rate, effect, energy, energy savings, flow, flow field, image velocimetry, influence, intensity, intensity of water, length, micro-riblets, microstructure samples, microstructured surfaces, micro‐riblets surface, particle image velocimetry, particles, rate, rate of water flow, reduction effect, reduction rate, results, riblets, role, samples, savings, smooth surface, spatial correlation analysis, structure, structure angle, structure of water flow, study, superhydrophobic surfaces, superhydrophobicity, surface, surface samples, turbulence, turbulence intensity, velocimetry, velocity, water, water flow

Funders

  • National Natural Science Foundation of China

Data Provider: Digital Science